Conditional probability of actually detecting a financial fraud – a neutrosophic extension to Benford’s law

نویسندگان

  • Sukanto Bhattacharya
  • Kuldeep Kumar
  • Florentin Smarandache
چکیده

______________________________________________________ This study actually draws from and builds on an earlier paper (Kumar and Bhattacharya, 2002). Here we have basically added a neutrosophic dimension to the problem of determining the conditional probability that a financial fraud has been actually committed, given that no Type I error occurred while rejecting the null hypothesis H0: The observed first-digit frequencies approximate a Benford distribution; and accepting the alternative hypothesis H1: The observed first-digit frequencies do not approximate a Benford distribution. We have also suggested a conceptual model to implement such a neutrosophic fraud detection system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Benford’s Law in Analyzing Geotechnical Data

Benford’s law predicts the frequency of the first digit of numbers met in a wide range of naturally occurring phenomena. In data sets, following Benford’s law, numbers are started with a small leading digit more often than those with a large leading digit. This law can be used as a tool for detecting fraud and abnormally in the number sets and any fabricated number sets. This can be used as an ...

متن کامل

Reality Checks for a Distributional Assumption: The Case of “Benford’s Law”

In recent years, many articles have promoted uses for “Benford’s Law,” claimed to identify a nearly ubiquitous distribution pattern for the frequencies of first digits of numbers in many data sets. Detecting fraud in financial and scientific data is a suggested application. Like the Normal and Chi-square distributions, Benford’s appears to offer an appealingly clear-cut, mathematically tractabl...

متن کامل

Detecting Corporate Financial Fraud using Beneish M-Score Model

Detecting financial fraud is an important issue and ignoring this issue may cause financial and non-financial losses to individuals and organizations. The aim of this study is to test the ability of Beneish M-Score Model for detecting financial fraud among companies listed on Tehran stock exchange. The research sample consists of 137 companies listed on Tehran Stock Exchange for a period of 11 ...

متن کامل

Providing a Model for Detecting Tax Fraud Based on the Personality Types of Corporate Financial Managers using the Neural Network Approach

One of the management measures to reduce tax liabilities is non-payment of taxes through tax fraud. Because personality factors may play a role in explaining tax ethics, examining personality traits and aspects of tax fraud can help to better understand the factors that influence tax decisions. The main purpose of this study is to provide a model for detecting tax fraud based on the personality...

متن کامل

Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford's Law Distributions

Benford’s Law [1] specifies the probabilistic distribution of digits for many commonly occurring phenomena, ideally when we have complete data of the phenomena. We enhance this digital analysis technique with an unsupervised learning method to handle situations where data is incomplete. We apply this method to the detection of fraud and abuse in health insurance claims using real health insuran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005